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In ancient times, a few individuals were able to calculate the radius of the earth in clever 
ways.  Two-thousand years ago, Eratosthenes compared the sun's angle on the same 
calendar date a year apart in Syrene and then Alexandria, comparing the angles of the 
sun's rays, which enabled him to calculate an approximation of the polar circumference 
of the earth, with an error rate between 1 and 20 percent (depending on the actual length 
of the measuring unit at the time, stadia).  In the 10th century, Al-Biruni measured the 
earth's radius by measuring the elevation angle of a mountain from two points in a line.  
With the help of an astrolabe and some trigonometry, he was able to calculate the earth's 
radius, also to a disputed degree of accuracy.

Today, knowing the mass of the earth, we can easily find the radius of earth by using 
Newton's gravitational equations:

 
where r = radius of earth, g = earth's gravitational acceleration, G = gravitational 
constant, and M = mass of earth

But I thought it would be interesting to find the radius of a planet of unknown mass and 
size, using only the information produced by a projectile.  As a thought experiment, 
imagine you are on this unfamiliar planet, and you don't know its radius, but would like 
to find it.  Imagine further you have only one device to help you, a machine that fires a 
projectile at any speed you like, parallel to the ground.  

We continue firing projectiles with increasing velocity over a flat area of the planet's 
surface, and measuring the amount it drops due to gravity after one second.  We increase 
the velocity until we find that the projectile stays the same distance from the ground after 
one second, meaning that the amount it has fallen due to the planet's gravitational 
acceleration equals the amount the planet's surface has curved away from the projectile's 
starting point.  This would be the surface orbital velocity for this planet.  We measure and 
make a note of the distance the projectile traveled parallel to the surface in one second, 
and we will call this distance b (represented in figure 1 by the red arclength hj).

Next we need to drop some things and measure g, the acceleration of the planet.  Since 

the distance an object falls is , we know that the object will fall half the distance of g 
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in one second.  We'll use the letter a for this distance of  (represented in figure 1 by the 

red line jk).

So now we have two values; b, the distance traveled by the projectile at orbital velocity in 
one second (red arclength hj), and a, the distance the projectile has dropped due to 
gravity along its path (line jk).  Using only these two values, we will find the radius of the 
planet.

figure 1

If we were using a circle with a radius of 1, we would find that the values of a and b 
would be quite simple to work with:

    and    

The value for b would be obvious, since any length around the surface of a circle is 
equivalent to its angle in radians, when the radius of the circle is 1.  For finding  a (or jk) 
we can do this in two ways when the circle has a radius of 1.  We can subtract 
cos(arcsin(x)), which is the same as cos(b), from the radius value of 1, and since x = hk = 
nj, taking cos(arcsin(nj)) gives us the length of line nc, and line jm is equivalent to line 
nc.  Then subtracting the length of line jm from 1, the circle's radius, we get the value for 
a, or line jk. 
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We can also use the Pythagorean theorem to find the adjacent side of ⊿ ncj.  Again, since 
x = nj, and nj is the opposite side of ⊿ ncj, and since the hypotenuse cj is equal to 1, we 

take the square root of .  This gives us the length of adjacent side nc, which also 

equals jm.  We now take 1 - jm, which is the same as  , and we again have the 
length of a, or jk.

However, we are on our strange planet, and the radius is certainly not equal to 1.  The 
only data we have is the value of b (the distance the projectile travels at orbital velocity in 
one second), and the value of a (the amount it falls due to gravitational acceleration in 
one second).  We cannot use arcsin to calculate the angle that the value of b represents, 
since that distance is quite large and the represented angle would be dependent on the 
circumference of the planet.  So we have no indication of the unique angle from the 
planetary center represented by the arc of the projectile's path.

The ratio a/b is associated with only one unique angle between zero and π/2.  For this 
unique angle, the size of the planet will determine the actual length of b, and also of a (the 
distance the projectile has fallen in one second).  As mentioned above, the unique angle 
with which the ratio a/b is associated can be found most easily when the radius of the 
planet is equal to 1.  Then the circumference of the planet would be equal to 2π, and so the 
length of b would be the length in radians around the circumference of the planet, which 
would also be its angle in relation to the center of the planet.

For example, in figure 1, the value of b is clearly 0.52359, or 30º, since the angle involved 
is arcsin(x), or arcsin(0.5).  The length of a can be found by 1 - cos(b), which would be 1 - 
0.866024 = 0.13397.  The ratio a/b would then be 0.13397 / 0.52359, or a/b = 0.25587.

A problem arises when we try to find the angle represented by the distance the projectile 
travels in one second.  To illustrate, if the planet has a circumference C of 1,000,000 
meters then its radius r is C/2π, or 159155 meters.  Then the value of b that would 
represent an angle of 0.52359 radians would be 0.52359 * r, or 83333.33 meters, and the 
corresponding value of a would be 0.13397  * r, or 21322.72 meters.  

It's important to remember that a/b is a ratio, and whether a/b is 21322.72 / 83333.33, or 
0.13397 / 0.52359, the ratio is the same, and both sets of values will return the same 
number here, or 0.25587, which is intimately related to a unique angle that corresponds 
only to that value of a/b.  It is clear that any size planet will return the same value for a/b 
with a fixed angle ∠hcj.
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So, just knowing that the projectile traveled 83333.33 meters and fell 21322.72 meters does 
not yet help us find the angle needed to calculate the planet's radius.  We need a formula 
based on the ratio a/b that we can use to find the unique angle to which it points.  Here is 
a formula that will take care of this problem:

As we see in the graph in figure 2, there is only one unique value of x that will return the 
ratio a/b, and this value of x is also the length of lines hk, nj and cm in figure 1, when the 
radius of the circle is equal to 1.  Taking arcsin(x) will give us the angle on the planet's 
surface represented by b, the distance the projectile traveled in one second at orbital 
velocity.  Finding the unique angle for b, which is arcsin(x), is equivalent to reducing the 
size of the planet to a radius of 1.

figure 2

But instead of graphing all values of 0 < x ≥ 1 to find the true angle, and solve for x this 

way, I liked the challenge of making an approximation equation for finding the value of x 
directly from the ratio a/b.  
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figure 3

This equation will return an approximation of the value of x, or line hk in figure 1, when 
the ratio a/b is plugged into it.  Since this line is equivalent to the line nk, which is the 
opposite side of ⊿ ncj, we can now take arcsin(x) to find the unique angle represented by 
arclength b.

As an example, let's look at how using the approximation equation in figure 2 would 
play out on the earth.  On earth, a projectile in orbit at ground level would need to be 
traveling at 7909 m/s to be in a ground level orbit, and so on earth b = 7909 m.  And the 

gravitational acceleration on earth is 9.80665 m/s^2, so using the formula  to 
calculate the distance the projectile would fall after one second, gives us a = 4.903325 m.  
Putting a/b, or 4.903325 / 7909, into the equation in figure 3, we get 0.00123994, which 
represents the length of x (or line hk) for a circle with a radius of 1.  Taking the arcsin of 
0.00123994, we arrive at the same number - because the arclength on earth of 7909 meters 
is such a small length along the circumference of the earth, it is almost a straight line.  
And since the angle represented by a (4.9 meters) to the starting point of the projectile is 
also such a tiny angle in relation to the curve of the earth, both line hk and line hj are 
almost the same value as b, or arclength hj.  What this means is that the angle represented 
by the value of b along the earth's surface, as radiating from the earth's center, is also 
0.00123994.  

Now that we have found the angle that 7909 meters represents around the circumference 
of the earth, we can now find the radius of the earth.  First we divide 2π / 0.00123994, 
giving us 5067.33.  That is how many segments of 7909 meters there are around the 
earth's circumference.  Multiplying 5067.33 * 7909 gives 40077514, a very close 
approximation of the circumference of the earth at the equator.  Dividing this by 2π to get 
the radius returns 6378534 meters, a very good approximation of the radius of the earth.

The entire equation to find the radius r of earth, using only the data gathered from the 
projectile in the form of the ratio a/b is:
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One might notice that with very small angles represented by the projectile's traveling 
distance, as they are on earth, we don't need to do such a laborious equation.  We can 
simply take 2(a/b) and receive almost the same result as the equation in figure 3.  But if the 
distance traveled by the projectile becomes a greater percentage of the planet's 
circumference, the error of using 2(a/b) becomes greater and greater.  Look at figure 1 
which shows an angle of 0.52359 radians, giving us an a/b value of 0.25587.  Then 2(a/b) 
returns 0.5117, which is noticeably less than the correct value of 0.52359, and the error 
will increase as the angle b along the circle increases.  But, using the equation in figure 3, 

plugging in an a/b value of 0.25587, we would generate an x value of 0.499966, the arcsin 
of which is 0.52356.  Not the exact value of arcsin 0.5, but very close for an 
approximation, with an error of only 0.000034.  

And with this we can arrive at the radius of the earth (or any other planet we might find 
ourselves on) just by firing a bullet, as long as that bullet goes at orbital velocity.  Not an 
eventuality that is likely to confront us, but it was enjoyable to work it out nonetheless.
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